
Spatial Data Science with R: Plotting a Shapefile with sf

Welcome to the Data Science Task Sheet Series. This series supplements the Iowa State University Extension and
Outreach Geospatial Technology Training Program’s workshops and short courses by providing quick and easy
instructions for performing a variety of mapping, data science, analysis, and visualization tasks.

In this task sheet you will install and use the sf package in R to work with spatial data. The sf package
implements the Simple Features standard – an open-source model for storing and accessing vector data (point,
line, and polygon-based geometry) commonly used by geographic information systems. You will install the sf
package and visualize spatial data provided by the United States Census Bureau in shapefile format, a file type
frequently used in spatial analysis and map-making. This task sheet also uses concepts covered in GISTP 0025 -
Filtering and Selecting Data with dplyr and GISTP 0026 - Mutating and Piping Data with dplyr.

December 2022GISTP0028

1. Getting Started & Downloading the Data

a. Download the data used in this task sheet from: https://isueogtp.
github.io/GISTaskSheets/SpatialDataScience_r/gistp0028.zip.

b. When the download is complete, you will need to unzip the
gistp0028 folder in order to access the files in RStudio. The
folder contains gistp0028.Rproj, a project file for RStudio;
gistp0028.R, a completed R script; and cb_2021_us_state_20m,
a folder containing shapefile data of state boundaries provided by
the U.S. Census Bureau.

c. Open RStudio by double-clicking on the gistp0028.Rproj
file. Next, create a new R script and install sf by running the
command install.packages(“sf”). If necessary, install the
Tidyverse packages by running install.packages(“tidyverse”).
Optionally, you may open and run the completed R script from
the Files tab.

d. Type and run library(sf) in the script to load the sf package
into your R session; next, add library(dplyr) to load dplyr.

2. Using the Simple Features Package

a. Next, type all _ states <- read _ sf(“cb _ 2021 _ us _
state _ 20m/cb _ 2021 _ us _ state _ 20m.shp”) to load the
state boundaries shapefile. When the data is loaded, a new entry
appears in the Environment pane. You will see there are 52
observations (sometimes referred to as features) and 10 variables.

b. There are 50 states in the United States, but this dataset has
52 features. Type all _ states$NAME in the script to see a list
of features present in the datset. Although they are not states,
District of Columbia and Puerto Rico are included in this
shapefile.

R 4.2.2

https://store.extension.iastate.edu/product/16607
https://store.extension.iastate.edu/product/16607
https://store.extension.iastate.edu/product/16608
https://isueogtp.github.io/GISTaskSheets/SpatialDataScience_r/gistp0028.zip
https://isueogtp.github.io/GISTaskSheets/SpatialDataScience_r/gistp0028.zip

Contact: Jay Maxwell, Data Analyst, and Professor Christopher J. Seeger, PLA, GISP can be reached at
geospatial@iastate.edu. Additional task sheets and information about the Geospatial Technology and Spatial
Data Science Programs are available at www.extension.iastate.edu/communities/gis.

This institution is an equal opportunity provider. For the full non-discrimination statement or accommodation
inquiries, go to www.extension.iastate.edu/diversity/ext.

c. Click on the blue circle in the Environment pane to expand
the information about all_states. The first nine variables are
attribute data (GEOID, NAME, ALAND, etc) and contain data
about each feature. The last variable, geometry, contains the
spatial coordinates describing each feature’s physical location on
the earth.

d. Type st _ geometry(all _ states) to access the spatial data in
all_states. Although st_geometry() runs on the entire data set,
only a portion of the first five entries will be output to the console.
The st_geometry() function is commonly used with other st_*
functions of the sf package to work with spatial type data.

e. We can visualize the spatial data by using the plot() function.
Type all _ states %>% st _ geometry() %>% plot() and a
map of the United States will appear in the Plots tab.

3. Working With Spatial Data Frames

a. Type class(all _ states) in your script the output includes
“sf”, “tbl”, “tbl_df”, and “data.frame.” all_states has inherited
all the properties and beviours of those class types, and any
functions that work with sf objects, tibbles (data structures used
in Tidyverse packages), or data frames can use all_states as
input.

b. The head() function returns the first six entries in a data frame
and the ALAND attribute gives the land area in square meters for
each feature. Type all _ states %>% arrange(desc(ALAND))
%>% head() %>% st _ geometry() %>% plot() to create a plot
of the six largest states in the all_states data frame. Note: You can
specify an output of n objects by using head(n).

c. Make a subset of Iowa and the neighboring states by typing
ia _ surrounding <- all _ states %>% filter(NAME
%in% c(“Iowa”, “Nebraska”, “Minnesota”, “South
Dakota”, “Illinois”, “Missouri”, “Wisconsin”)) %>%
select(“GEOID”, “NAME”, “geometry”). You can plot this new
variable by typing ia _ surrounding %>% st _ geometry() %>%
plot(). A new image will appear in the Plots tab.

d. The plot() function is good for quickly inspecting your spatial
data, but other packages are better suited to producing interactive
and visually pleasing maps. The packages ggplot, tmap and
leaflet provide more options for advanced cartography and will
be covered in future Spatial Data Science with R task sheets.

mailto:geospatial%40iastate.edu?subject=
https://www.extension.iastate.edu/communities/gis
https://www.extension.iastate.edu/diversity/ext

