ArcGIS Pro: Working with Lidar Data

Welcome to the Essential GIS Task Sheet Series. This series supplements the Iowa State University Extension and Outreach Geospatial Technology Training Program's workshops and short courses by providing quick and easy instructions for performing a variety of mapping, data science, analysis and data visualization tasks.

For this tutorial you will be processing lidar (light detection and ranging) data from an area near Ledges State Park in Boone, Iowa. Lidar is a remote sensing technique similar to radar, however lidar uses light waves instead of sound waves to create more accurate and detailed measurements. You will be downloading several LAS lidar files and using ArcGIS Pro tools to convert them into a single raster image. To learn how to source your own Iowa lidar data, we suggest reading the task sheet **Downloading Iowa Lidar Data** - <u>GISTP 0016</u>.

1. Getting Started

- a. To download the data used in this task sheet, navigate to: <u>https://go.iastate.edu/91K6IM</u>
- b. When the download is complete, you will need to unzip the folder in order to access the files in ArcGIS Pro.
- c. Open ArcGIS Pro. Create a new project by clicking **Map** under the **New** column in the start page.
- d. Next, click the **Insert** tab on the ribbon and select **Add Folder**. Choose the folder **GISTP0013** from step **1b** in the dialog window that opens and press **OK**.

2. Setting Coordinate System and Adding LAS Files

- a. Right-click on Map in the Contents pane and select Properties.
- b. In the Map Properties window, select the Coordinate Systems tab. Inside the XY Coordinate Systems Available box, expand Projected Coordinate System -> UTM -> NAD 1983 and select NAD 1983 UTM Zone 15N. Click OK to close the properties window. Note: The LAS files from GeoTREE do not have a default coordinate system and will not will not appear in their proper location without this step.
- c. In your Catalog pane, expand the folder you added in step 1d and drag the three LAS files (04224648.las, 04244648.las, & 04264648.las) onto the map.
- d. Once the files are added to the map you will see three red boxes. These outlines represent the area covered by our LAS files – Ledges State Park south of Boone, Iowa.

ArcGIS Pro 2.9.3

GISTP 0013

3. Creating LAS Dataset and Raster Image

- a. Select the **Analysis** tab in your ribbon and click on **Tools**. In the **Geoprocessing** pane search box type **Create LAS Dataset** and select the top result.
- b. In the Create LAS Dataset tool, set Input Files as the three LAS files you unzipped earlier. Set Output LAS Dataset as IasDataset.Iasd and Coordinate System to Current Map. Leave the remaining settings at their default values and click Run.
- c. A new object, **lasDataset**, is added to your **Contents** pane. It has grouped the three tiles together and if you zoom in very close, you can see the points which make up the lidar point cloud.
- d. In the Geoprocessing pane, search for and open the LAS Dataset to Raster tool. Set Input LAS Dataset as lasDataset.
 lasd and set Output Raster as las_raster. Leave the remaining options as their default setting and click Run.
- e. The file **las_raster** is added to your **Contents** and a black and white raster image representing elevation appears on top of the red tiles.
- f. This project and raster image and will be used in the followup task sheet *ArcGIS Pro:Hillshade, Slope, and Contour -* <u>GISTP</u> <u>0014</u>.

Create LAS Dataset × -	\oplus
Create LAS Dataset (Data Management Tools)	^
Creates a LAS dataset referencing one or more LAS files and optional surface constraint features.	

€	Create LAS Dataset	\oplus	
Parameters Environ	ments	(?)	
Input Files			
C:\geodata\PM2	082-20e\04224648.las		
C:\geodata\PM2082-20e\04244648.las			
C:\geodata\PM2	082-20e\04264648.las	~	
Include subfolders			
lasDataset.lasd			
Surface Constraints			
	Input Features		
	Height Field		
	Type		
	31-	(+) Add another	
Coordinate System			
NAD_1983_UTM_Zor	e_15N	•	
Create PRJ For LAS Fil	es		
No LAS Files		•	
Compute Statistic	i,		
Store Relative Path	s		

ieoprocessing		≁ Ū ×
EAS Da	taset To Raster	\oplus
arameters Environments		?
Input LAS Dataset		
lasDataset.lasd		-
Output Raster		
las_raster		
Value Field		
Elevation		+
Interpolation Type	Binning	•
Cell Assign	ment Average	
Void Fill Me	thod Linear	•
Output Data Type		
Floating Point		-
Sampling Type		
Cell Size		•
Sampling Value		10
Z Factor		1

Contact: Extension GIS Specialist Bailey Hanson, GISP <u>bahanson@iastate.edu</u>, 515-520-1436 or Professor Christopher J. Seeger, ASLA, GISP <u>cjseeger@iastate.edu</u>, 515-509-0651. Additional task sheets and information about the Geospatial Technology and Spatial Data Science Programs are available at <u>www.extension.iastate.edu/</u> <u>communities/gis</u>.

This institution is an equal opportunity provider. For the full non-discrimination statement or accommodation inquiries, go to <u>www.extension.iastate.edu/diversity/ext</u>.